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This paper deals with the stabilization of flutter in cantilevered pipes conveying fluid with
constraints on input energy for control. The controller in this study is designed by using an
algorithm which iteratively tunes the weighting matrix of the quadratic performance index in
the LQG problem. This controller design method takes the performance of the actuator into
consideration. The theoretical and experimental results show that the effectiveness of the
controller in stabilizing flutter in cantilevered pipes conveying fluid varies according to the
input variance constraints, i.e., the difference in the dynamic range of an actuator. Furthermore,
the critical flow velocity at instability of the pipe can be estimated by the method stated in this
paper, where the system loses its stability because of the restriction of control force produced by
an actuator. ( 1998 Academic Press
1. INTRODUCTION

THE STUDY OF THE BEHAVIOUR of cantilevered pipes conveying fluid is not only important in
the engineering field (oil pipelines, heat exchanger tubes, etc.), but also academically
interesting as a nonconservative problem of elastic stability. Several researchers have
investigated this problem from the viewpoint of dynamic stability (Gregory & Paı̈doussis
1966 a, b; Paı̈doussis & Issid 1974; Sugiyama et al. 1985, 1988). However, few studies have
been reported on the stabilization of cantilevered pipes conveying fluid except the authors’
previous works. In these studies, first of all, the feasibility of applying the optimal control
theory for stabilizing a cantilevered pipe conveying fluid was investigated theoretically
(Doki & Tani 1986, 1988). Next, the effects of the mass of the control device on the dynamic
stability and active control of a pipe and the most suitable location of the control device
were studied theoretically (Doki & Aso 1989). The required force for the active control of
the pipe was produced by two methods: one was the tendon-control method for a moment
actuator and the other was the thruster-control method for a transverse force actuator. It
0889-9746/98/050615#14 $30.00 ( 1998 Academic Press
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was shown experimentally by Doki et al. (1995) that the simplified active control method
using an analog PID controller, in which no CPU was included in the control systems, was
effective for stabilization of the cantilevered pipe. Furthermore, they clarified that the H=

controller was robust against the change in properties of the pipe system caused by
increasing flow velocity, in comparison with a PID controller (Doki et al. 1996).
Recently, a study on the active control of chaotic vibration of a pipe was reported by Yau
et al. (1995).

Although passive vibration-control methods have usually been used for vibration sup-
pression in the engineering field, their effectiveness decreases considerably when the design
parameters and/or characteristics of the system vary. Instead of these methods, an active
vibration-control method which uses external energy has been introduced to many engin-
eering applications in order to suppress the vibration. However, an actuator cannot
produce an unlimited control force in the active control of structures. Therefore, it becomes
important to investigate theoretically and experimentally the effect of the performance
of an actuator on the dynamic stability and active control of cantilevered pipes conveying
fluid.

This paper deals with the stabilization of flutter in cantilevered pipes conveying fluid with
a constraint on input energy for control, while minimizing the variance of the pipe
deflection. We take the input energy for control as an index of the performance of the
actuator and try to design a controller which satisfies the constraint condition on the
variance of the closed-loop control effort. This controller design method takes the perfor-
mance of the actuator into consideration, and yields an algorithm which iteratively tunes
the weighting matrix of the quadratic performance index in the LQG problem (Hsieh et al.
1989; Zhu & Skelton 1991; Zhu et al. 1997).

The control object which consists of a pipe system and an actuator is modelled math-
ematically using the Galerkin method. The experimental set-up consists of the pipe system,
a laser sensor, an A/D converter, a personal computer, a D/A converter, and a DC
servomotor which produces a transverse force for active control of the pipe. It will be shown
from the theoretical and experimental results that the effectiveness of the controller in
stabilizing the flutter phenomenon in cantilevered pipes conveying fluid varies according to
the input variance constraints, i.e., the difference in the performance of an actuator. The
input variance constraints stated in this paper can be used as a guide for the selection of an
actuator when the active control system is designed. Furthermore, it will be shown that the
critical flow velocity at instability of the pipe can be estimated by the method given in this
paper, where the system loses its stability because of the restriction of the control force
produced by the actuator.

2. ANALYTICAL MODEL OF CANTILEVERED PIPES CONVEYING FLUID

The thruster-controlled pipe system under consideration is shown in Figure 1. It consists of
a uniform cantilevered pipe of length ¸, flexural rigidity EI, mass per unit length m

b
, and the

control system. Furthermore, an incompressible fluid of mass per unit length m
f

flows with
a constant velocity » inside the pipe. The pipe is supported horizontally by N

s
strings of

length l, and for modelling purposes the pipe is assumed to move only in the horizontal
plane. Each tension ¹

i
"C

i
(m

f
#m

b
)gl/N

s
(C
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'0, i"1,2 ,N

s
) is obtained by using

Clapeyron’s Three Moment Theorem for a continuous beam. In order to control the
response of the cantilevered pipe, a target of a sensor and a thruster with a spring constant
K, whose lumped mass is negligible, are attached to the pipe at x"¸

s
and ¸

a
, respectively.



Figure 1. Definition of the analytical model.
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The control displacement º(t) is determined by a control law, which will be stated in the
next section, based on the response of the pipe. The thruster creates a transverse force
by the action of the ram at x"¸

a
. It is assumed that the pipe is made of a material

with Kelvin—Voigt type viscoelasticity, and that E* is the coefficient of internal dissipation.
With ¼(x, t) denoting the deflection of the cantilevered pipe and taking the effects of
horizontal force based on the tension ¹

i
of supporting strings of the pipe into con-

sideration, the governing differential equation of motion of the pipe and the boundary
conditions are given in the nondimensional form as follows (Paı̈doussis & Issid 1974; Doki
et al. 1996):
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where the subscript after a comma denotes the partial differentiation with respect to the
corresponding independent variable (m or q) and d (m) is the Dirac delta function. The
nondimensional quantities in these equations are related to the physical ones through the
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following relations:
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in which t is the time. Considering boundary conditions (2), the deflection w (m, q) can be
represented by the following equations:
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where a
m
(q) is an unknown time function, /

m
(m) is a normalized eigenfunction of the

cantilever and a
m

is a solution of the following frequency equation:

1#cosh a
m

cos a
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Substituting equation (4) into equation (1) and applying the Galerkin procedure, i.e.,
multiplying the resulting equation by /

r
and integrating it from 0 to 1, the following

equations are obtained:
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where the overdot denotes differentiation with respect to the nondimensional time q, and d
rm

is the Kronecker delta. Equation (7) is rewritten in state-space form as follows:
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In the above equation, [ ]T means the transpose of the matrix. The deflection of the pipe
at m"m

s
is chosen as the output of the system

w (m
s
, q)"Mx (q),

M"[/
1
(m

s
), /

2
(m

s
),2, /

N
(m

s
), 0,2, 0]. (11)

Figure 2 shows a comparison of Bode diagrams from u to w (m
s
, q) of the pipe system

between the analytical model, which is analysed by using the five-mode approximation
(N"5), and the experimental data for flow velocity of water »"0 m/s [Figure 2(a)] and
»"6)74 m/s [Figure 2(b)]. It is found that the analytical model for the cantilevered pipe
conveying fluid in this study is appropriate because the analytical results agree well with the
experimental values.

3. CONTROLLER DESIGN METHOD

3.1. INPUT VARIANCE CONSTRAINT (IVC) CONTROLLER DESIGN

In this study, we formulate the controller design method, taking the performance of the
actuator into consideration, as a controller design problem which satisfies the following
specifications.
Problem: For a system with white noise in the plant and measurement, design a controller
which minimizes the variance of the closed-loop response subject to the constraints on input
variance.

This problem is described mathematically as the following IVC control problem (Skelton
1988; Hsieh et al. 1989). Using equations (9)—(11), consider the following system:

x5 "Ax#Bu#L
v
v,

y"Cx, (12)

z"Mx#L
w
w,

where v3Rl
1 and w3Rm1 are zero-mean white noise vectors with intensity V'0 and W'0,

respectively. Furthermore, we assume that there is no correlation between v and w, y3Rn6

and z3R1 are the controlled output vector and the measurement, respectively. In this
paper, the matrix C is determined as

C"[/
1
(1),2, /

N
(1), 0,2, 0]. (13)

This means that the controlled output vector y is the displacement at the free end of the
pipe. Since all modes of vibration are observable at the free end of the cantilevered beam, the
problem on observability does not arise. L

v
and L

w
are the real (2N]lM )- and (1]mN )-

dimensional matrices. For the system in equation (12), consider the design problem



Figure 2. Bode diagram of the pipe system (k"4985, m
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"0)3, m

s
"0)4): (a) »"0 m/s; (b) »"6)74 m/s.
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to minimize

J"E
=

MyTQyN, (14)

Q: nN ]nN positive symmetric matrix

subject to the inequality constraints

E
=

Mu2N4j (15)

where E
=

is the expectation operator and j ('0) means an upper bound of the variance of
control input u specified by a control system designer.
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3.2. COMPUTATIONAL ALGORITHM FOR IVC CONTROL PROBLEM

The IVC problem can be solved by using the following design algorithm (Hsieh et al. 1989;
Zhu & Skelton 1991; Zhu et al. 1997) which iteratively tunes the weighting matrix of the
quadratic performance index in the LQG problem. We identify the following steps.

Step 1. Design beforehand the Kalman filter for system (12) and assume the Kalman filter
gain H. Specify j ('0) in equation (15). Set r(0)'0 and the iteration number j as 1.

Step 2. Let r( j)'0. Obtain the optimal regulator gain G ( j )"!BTP( j)/r ( j) which
minimizes the following quadratic cost function:

JI "E
=

MxTCTQCx#r( j )u2N, (16)

where P ( j ) is the solution of the following algebraic Riccati equation:

ATP ( j)#P( j )A!
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Step 3. The state-space form of LQG controller is given as follows:
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Obtain the solution X ( j ) of the following Lyapunov equation:
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Using X( j), E
=

Mu2N is given as follows:
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is satisfied, then stop. Otherwise, update r ( j) with
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by replacing j with j#1 and go to Step 2.
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4. EXPERIMENT

4.1. EXPERIMENTAL SET-UP

The experimental set-up and physical properties of the pipe are shown in Figure 3 and
Table 1, respectively. The experiments are conducted with silicone rubber pipes conveying
water. The pipe is supported horizontally at intervals of 0.1 m by six thin strings with length
l"2)2 m hung from the ceiling because of its flexibility. This set-up consists of the pipe
system, a laser sensor, an A/D converter, a personal computer which implements the
discretized LQG controller discussed in the previous section, a D/A converter, and a DC
servomotor which produces a transverse force for active control of the pipe. A target is
attached at 0)24 m (m

s
"0)4) from the fixed end of the pipe, so that a laser sensor can detect

the deflection of the pipe. A control force acts on the pipe at 0)18 m (m
a
"0)3) from the fixed
TABLE I
Physical properties of pipe (»"0 m/s)

Parameter Value

Inner diameter, d (mm) 4)38
Outer diameter, D (mm) 12)23

Length, ¸ (m) 0)602
Mass per unit length of pipe, m

b
(kg/m) 0)122

Mass per unit length of fluid, m
f

(kg/m) 1)52]10~2
Young’s modulus, E (Pa) 6)06]106

Natural frequency (1st mode), f
1

(Hz) 0)50
Natural frequency (2nd mode), f

2
(Hz) 2)25

Logarithmic decrement (1st mode), d
1

0)15
Logarithmic decrement (2nd mode), d

2
0)31

Figure 3. Experimental set-up.
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end of the pipe by using a DC servomotor, pulleys, a wire, and a spring with a nondimen-
sional spring constant k"4985 attached between the wire and the pipe.

4.2. EXPERIMENTAL RESULTS

In the previous section, the inequality constraint on the variance of the control effort was
defined as an index of performance of the actuator. In order to examine the effect of the
constraint on the active control of cantilevered pipes conveying fluid, the following experi-
ments were conducted. In these experiments, the pipe became unstable in the second mode
by flutter in all cases. The controllers were designed for various values of j by the method
stated in the previous section. The convergence process of controller design is shown in
Figure 4 for j"4)0]106 as an example.

A comparison between the controlled and uncontrolled responses of the pipe at m
s
"0)4

and the variation of the control input u are shown in Figure 5(a—c) for j"1)0]106 and
6)0]106 for a flow velocity »"7)13 m/s when the initial disturbance acts on the free end
of the pipe. From this figure, it is observed that the pipe is unstable by flutter in the
uncontrolled system, while the closed-loop systems for both values of j suppress the
disturbance and prevent the growth of flutter. Furthermore, the settling time of the response
and the maximum value of the control input are about 3 s and 0)5 mm for j"1)0]106, and
Figure 4. Convergence process of controller design (j"4)0]106).



Figure 5. Response to initial disturbance (k"4985, m
a
"0)3, m

s
"0)4, »"7)13 m/s).
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about 1)5 s and 1)8 mm for j"6)0]106, respectively, because the latter controller is
allowed to use more energy for control than the former. The stabilization effect of the
controllers designed for j"1)0]106 and 6)0]106 on flutter for a flow velocity
»"6)80 m/s is shown in Figure 6. Figure 6(a) shows the uncontrolled flutter response. It is
found that the flutter is completely controlled by switching on the controller at the



Figure 6. Flutter response (k"4985, m
a
"0)3, m

s
"0)4, »"6)80 m/s).
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chain-dotted line in Figure 6(a—c). The settling time of the response is about 3 s for
j"6)0]106 and 43% of that for j"1)0]106. Figure 7 shows the response of the pipe to
the flutter phenomenon for a flow velocity »"7)13 m/s. Although the pipe is stabilized by



Figure 7. Flutter response (k"4985, m
a
"0)3, m

s
"0)4, »"7)13 m/s).
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the controller for j"10)0]106, the controller for j"3)0]106 cannot stabilize the pipe
because the input energy for control is too small. However, the amplitude of the controlled
response in this case is smaller than that of the uncontrolled one.

From these experiments, the controller described in this paper is found to be effective in
stabilizing the flutter of a cantilevered pipe conveying fluid; its effectiveness varies according
to the performance of the actuator.

Next, we examined theoretically and experimentally how the controller designed in this
study increases the critical flow velocity when the system loses its stability, because of the
restriction of control force produced by an actuator. If the control force is not sufficient
because of deficiency in the performance of an actuator, the flutter is not controlled and the
pipe becomes unstable at a new critical flow velocity. The theoretical critical flow velocity is



Figure 8. Critical flow velocity. The solid line gives theoretical critical flow velocity with supporting strings. The
critical flow velocity without supporting strings is shown as the broken line.
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computed by the following procedure in both cases: when the pipe is supported by six
strings, and when no strings exist to support it.

Step 1. Design a controller for an energy constraint [j in equation (15)] and a flow
velocity » by the algorithm of Section 3.

Step 2. If the controller is designed successfully [the factor r( j ) is converged in the design
algorithm] in Step 1 under this j, » is replaced by »

/%8
which is satisfied »

/%8
'» and go to

Step 1.
Step 3. If the design of the controller is not successful [convergence of the factor r ( j ) is

not achieved], replace » by »
/%8

(» and to Step 1.

Using this procedure, the maximum flow velocity for which the stabilizing controller can
be designed under some energy constraint (in the form of j) is searched using a bisection-like
method. Figure 8 shows the critical flow velocity for various values of j. It is found that the
critical flow velocity increases with an increase of j, and theoretical predictions agree
qualitatively well with experimental values.

5. CONCLUSION

The dynamic stability and active control of cantilevered pipes conveying fluid with con-
straints on input energy for control have been studied theoretically and experimentally. The
controller in this study was designed by taking the variance constraints of the actuator into
consideration. The effects of the constraints on the stabilization of the pipe conveying fluid
have been considered. The main results are summarized as follows.

(i) The controller designed in this study is effective in stabilizing the cantilevered pipe
conveying fluid.

(ii) The effectiveness of the controller in stabilizing the flutter phenomenon of cantilevered
pipes conveying fluid varies according to the input variance constraints, i.e., the
difference in the performance of an actuator. Therefore, the constraint condition on the
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variance of the control effort stated in this study can be used as a guide for the selection
of an actuator in the design of an active control system for cantilevered pipes conveying
fluid.

(iii) The critical flow velocity of the pipe can be estimated by using the method given in this
study, where the system loses its stability because of restriction of the control force
produced by an actuator.
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